import pandas as pd
from moonshot import Moonshot
from moonshot.commission import PerShareCommission
from quantrocket import get_prices
class USStockCommission(PerShareCommission):
BROKER_COMMISSION_PER_SHARE = 0.005
class FirstHalfHourPredictsLastHalfHour(Moonshot):
"""
Intraday strategy that buys (sells) if the market is up (down) during the first
and penultimate half-hour.
"""
CODE = 'first-last'
DB = 'usstock-1min'
DB_TIMES = ['10:00:00', '15:00:00', '15:30:00', '15:59:00']
DB_FIELDS = ['Open','Close']
SIDS = ["FIBBG000BDTBL9"]
COMMISSION_CLASS = USStockCommission
SLIPPAGE_BPS = 0.5
MIN_VIX = None
BENCHMARK = "FIBBG000BDTBL9"
BENCHMARK_TIME = "15:59:00"
def prices_to_signals(self, prices: pd.DataFrame):
closes = prices.loc["Close"]
opens = prices.loc["Open"]
prior_closes = closes.xs('15:59:00', level="Time").shift()
ten_oclock_prices = opens.xs('10:00:00', level="Time")
first_half_hour_returns = (ten_oclock_prices - prior_closes) / prior_closes
fifteen_oclock_prices = opens.xs('15:00:00', level="Time")
fifteen_thirty_prices = opens.xs('15:30:00', level="Time")
penultimate_half_hour_returns = (fifteen_thirty_prices - fifteen_oclock_prices) / fifteen_oclock_prices
long_signals = (first_half_hour_returns > 0) & (penultimate_half_hour_returns > 0)
short_signals = (first_half_hour_returns < 0) & (penultimate_half_hour_returns < 0)
signals = long_signals.astype(int).where(long_signals, -short_signals.astype(int))
if self.MIN_VIX:
vix = get_prices("vix-30min",
fields="Close",
start_date=signals.index.min(),
end_date=signals.index.max(),
times="14:00:00")
vix = vix.loc["Close"].xs("14:00:00", level="Time").squeeze()
vix = signals.apply(lambda x: vix)
signals = signals.where(vix >= self.MIN_VIX, 0)
return signals
def signals_to_target_weights(self, signals: pd.DataFrame, prices: pd.DataFrame):
target_weights = signals.copy()
return target_weights
def target_weights_to_positions(self, target_weights: pd.DataFrame, prices: pd.DataFrame):
positions = target_weights.copy()
return positions
def positions_to_gross_returns(self, positions: pd.DataFrame, prices: pd.DataFrame):
opens = prices.loc["Open"]
closes = prices.loc["Close"]
entry_prices = opens.xs("15:30:00", level="Time")
session_closes = closes.xs("15:59:00", level="Time")
pct_changes = (session_closes - entry_prices) / entry_prices
gross_returns = pct_changes * positions
return gross_returns